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Abstract. We study the one-dimensional behavior of a cellular automaton aimed at the description of the
formation and evolution of cultural domains. The model exhibits a non-equilibrium transition between
a phase with all the system sharing the same culture and a disordered phase of coexisting regions with
different cultural features. Depending on the initial distribution of the disorder the transition occurs at
different values of the model parameters. This phenomenology is qualitatively captured by a mean-field
approach, which maps the dynamics into a multi-species reaction-diffusion problem.

PACS. 87.23.Ge Dynamics of social systems – 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)
– 89.75.Fb Structures and organization in complex systems

1 Introduction

In recent years cellular automata and lattice models have
been introduced in many fields in order to investigate the
emergence of nontrivial collective phenomena out of sim-
ple microscopic interactions between a large number of
elementary objects [1–3]. In the context of social phenom-
ena, numerical simulations of simple automata have been
used to study the formation and spreading of cultural do-
mains [4–7]. Culture is intended here as the set of behav-
iors, beliefs, technical standards or values that individuals
may mutually exchange. The cultural features are mod-
eled as a set of F variables, which can assume integer
values between 1 and Q, specifying the various traits that
each feature can assume [4]. In general, the environment
where exchanges take place is a two-dimensional square
grid, where each site represents an individual or a group of
individuals, whose culture is defined by the specific values
of the F variables. Starting from an initial random con-
figuration, interactions take place between nearest neigh-
bors, leading to the formation and evolution of regions of
homogeneous culture. It is obvious that the assessment
of how realistic the model is or to which extent its re-
sults can be useful in the interpretation of empirical data
in the social science context is a task left to sociologists.
From the point of view of statistical physics this model
(Axelrod model) is appealing, because it has a non-trivial
out of equilibrium dynamics, similar but not equivalent to
other well studied models [8,9].

In previous works [4–7], it has been investigated how
the model behavior changes with respect to the values of
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the parameters F and Q. In particular it has been shown
by large-scale simulations that, on a two-dimensional
lattice, the model exhibits a non-equilibrium transition
between a phase with all the system sharing a common cul-
ture and a disordered phase of coexisting regions with dif-
ferent cultures. This is a very interesting example of order-
ing phase transition in the context of far from equilibrium
statistical physics. In this paper we perform a thorough
analysis of the model defined in reference [4] on a one-
dimensional lattice. This geometry acquires a special role
in the description of social systems, since it can be used
as starting point for complex topologies such as small-
world networks [10,11]. Noticeably, in dimension d = 1 it
is possible to provide an analytical treatment of the model
by mapping the evolution dynamics into a multi-species
reaction-diffusion system, that we study within a mean-
field approximation. We recover also in one dimension the
existence of an ordering phase transition, occurring at a
critical value of the parameter Q. When the initial value
of the cultural variables on each site is chosen randomly
with uniform distribution between 1 and Q, we find that
the system undergoes a transition between a fully ordered
state for Q < Qc and a disordered one for Q > Qc. When
the distribution of initial variables is instead Poissonian
of parameter q, the system exhibits a phase transition be-
tween order and disorder, but only for F > 2. For F = 2
any finite value of q leads, in the thermodynamic limit, to
an asymptotic disordered state. In order to test the an-
alytical predictions we perform numerical simulations of
the original dynamics, finding a good agreement with the
theoretical results.
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The paper is organized as follows. In Section 2 the
model is introduced, the dynamics qualitatively described
and the results of the two-dimensional case briefly summa-
rized. In Section 3 we present the mapping to the reaction-
diffusion system and the mean-field approach to it. In Sec-
tion 4 we report the results of numerical simulations of the
model in one dimension, both for the case of uniform and
Poisson initial distributions, and compare them with the
analytical predictions. Finally in Section 5 we draw some
conclusions.

2 The model

We consider a one-dimensional lattice of linear size L. On
each site i there are F integer variables σi,f which de-
fine the cultural features of the individuals living on that
site. In the original model [4], each feature f = 1, . . . , F
on each site i is initially drawn randomly from a uniform
distribution on the integers between 1 and Q. The pa-
rameter Q is a measure of the initial cultural variability
(i.e. disorder) in the system. In reference [6] instead, the
initial values were chosen according to a discrete Poisson
distribution of parameter q Prob(σi,f = k) = qke−q/k!,
so that the positive real q was the average of the values
extracted. Results were found to be qualitatively similar
independently from the initial distribution, and only the
Poissonian case was studied in detail. Here we will con-
sider also the case with uniform distribution and we will
discuss analogies and difference between the two cases.

The dynamics is defined as follows. At each time step,
a pair of nearest neighbor sites i and j is randomly chosen.
A feature f is selected and if σi,f �= σj,f nothing happens.
If instead σi,f = σj,f then an additional feature f ′ is ran-
domly chosen among those taking different values across
the bond, σi,f ′ �= σj,f ′ . Such a feature is then set equal
in the two sites: σi,f ′ → σ′

i,f ′ = σj,f ′ . Time is measured
as the total number of attempts divided by the number
of sites L. Axelrod model can be seen as F coupled voter
models [8]. The evolution of the system is basically a coars-
ening dynamics of ordered regions. The initial state is to-
tally disordered since the choice of variables in each site is
uncorrelated to any other one. As the dynamics starts, the
interaction between sites tends to make neighbors similar,
introducing correlations in the system. Ordered regions
start to form with all sites sharing exactly the same value
of all variables. Clearly there are many different possi-
ble types of ordered regions. As time proceeds boundaries
between regions move, and the average domain size in-
creases. On a finite lattice the ordering process continues
until the system reaches an absorbing state such that no
further dynamics is possible. Absorbing states can be of
two types. A perfectly ordered absorbing state is made by
a single region covering the whole system: all sites have the
same set of variables σi,f . Otherwise an absorbing state
can also be made by different ordered regions such that
adjacent regions have all variables different. In that case
all sites are either totally equal or totally different from
their neighbors and no interaction may take place.

The nature of the final absorbing state depends on the
full evolution of the system, i.e. it is the result of the com-
petition between the disorder of the initial configuration
and the drive toward order due to local interactions. Intu-
itively one expects that for small initial disorder (small Q
or q) local interactions will prevail and the final state will
be perfectly uniform, while in the opposite limit the or-
dering process will not last long enough to fully overcome
the disorder of the initial condition. This picture turns
out to be correct in two dimensions [6]. In that case ex-
tensive numerical simulations have shown that for small
values of q, i.e. small initial disorder, the model converges
toward an ordered state where a single culture occupies a
macroscopically large fraction of the system. On the con-
trary for large values of q many different cultures coexist
in the final absorbing state. In the thermodynamic limit
of an infinitely large system one sees a well defined non-
equilibrium phase transition for a precise value qc, sepa-
rating an ordered phase (for q < qc) from a disordered
one (for q > qc). Interestingly, the nature of the transition
is different depending on the number F of variables used
to define the culture of a site. If F = 2 the transition is
continuous, with the order parameter (defined below) van-
ishing for q → qc. For F > 2 instead the order parameter
exhibits a jump at the transition. The different behavior
is reflected also in the distribution of region sizes at the
transition. For F = 2 it is a power law with an expo-
nent τ < 2, while for F > 2 the exponent is universal
and larger than 2, so that the transition does not involve
the divergence of a correlation length [6]. It is important
to stress that the kind of nonequilibrium phase transition
discussed here is not an absorbing phase transition [1].
Here the system always reaches a frozen absorbing state.
The transition occurs in the properties of such absorbing
state and hence is static in nature, although it is clearly
determined by the dynamical evolution of the problem.

In this paper we shall investigate whether the same
kind of transition occurs also in a one-dimensional geome-
try. To monitor the evolution of the model we mainly focus
on the density (i.e. the number divided by the system size
L) of active bonds nA(t) and of fixed bonds nF (t). We de-
fine as active a bond between two adjacent sites such that
they have more than 0 and less than F equal features.
We define as fixed a bond between two adjacent sites such
that they have no equal variables. Clearly, active bonds
are where the dynamics take place and form the bound-
ary between regions that may interact, leading to further
ordering. Boundaries formed by fixed bonds are instead
frozen. All bonds connecting sites belonging to the same
region are neither active nor fixed. We denote their den-
sity as n0. Clearly, for all times n0 + nA + nF = 1. Both
the density nA of active bonds and the density nF of fixed
bonds measure correlations in the system: 1/nF and 1/nA

are correlation lengths growing in time. Since for any fi-
nite lattice an absorbing state is always reached by the
dynamics, nA(t) goes asymptotically to zero in all cases.
The value of nF (t = ∞) measures the order in the system.
If nF (∞) keeps finite as L diverges, the system remains
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disordered in the thermodynamic limit, while nF (∞) → 0
indicates full order.

Another useful quantity that will be considered below,
is 〈Smax〉/L, where 〈Smax〉 is the average over different
realizations of the size of the largest region existing in the
final frozen state [6]. 〈Smax〉/L is the fraction of the whole
lattice occupied by the largest region and is an alternative
order parameter, being zero for a disordered state and
finite when a macroscopically large region exists in the
system.

In the next section we describe an analytical treatment
of the problem based on the mapping of the dynamics into
a multi-species reaction-diffusion system, which is then
analyzed in terms of mean-field equations. This approach
turns out to capture remarkably well the qualitative be-
havior of the system. In some cases it gives predictions
that are quantitatively accurate.

3 Theoretical approach

3.1 Mapping to a reaction-diffusion system

The Axelrod model considers the sites as elementary
objects, which interact according to the rules described
above. This dynamics can also be thought in terms of
bonds between sites whose dynamics is induced by the
updating of sites. More precisely, let us define as bond of
type k a bond connecting two sites with k different fea-
tures. Clearly k can be any number between 0 and F .
Bonds of type 0 connect sites with all variables equal, i.e.
belonging to the same region. Bonds of type F instead
connect sites completely different and are therefore the
fixed bonds introduced above. Bonds of type 1, . . . , F − 1
are what we called active bonds in the previous section.

To understand how the update of sites induces a dy-
namics for bonds, let us consider three neighbor sites (A),
(B), (C). Site (B) is updated depending on the configu-
ration of its neighbor (A). If the bond between sites (A)
and (B) is of type 0 or F nothing occurs. Otherwise, if
the bond is of type n one variable on site (B) is set equal
to the corresponding variable on site (A). Hence the bond
(A)-(B) becomes of type n − 1. The update of site (B)
modifies in general also the state of bond (B)-(C), which
initially was of type m. Notice that for this bond the num-
ber of features which are different may increase, decrease
or even remain unchanged, so that after the update the
bond may be of type m − 1, m or m + 1. In summary, if
we denote a bond of type k as Ak, the update of a site is
then equivalent to a two-particle reaction

An + Am → An−1 + Am+j (j = 0,±1). (1)

A specific example is presented in Figure 1. Bonds of type
0 can be considered as a sort of vacuum state where other
types of bonds move. Reactions of the type A1 + A0 →
A0 + A1 are then diffusion processes for bonds of type 1.
These are the only diffusion processes allowed.

In order to fully specify the dynamics we must provide
the transition rates for the reactions (1). Let us consider

   

Fig. 1. Example of the evolution of three neighboring sites
for F = 4. Site (B) and its neighbor (A) are selected and their
feature f = 1 is compared. Since σA,1 = σB,1 = 5, the two sites
interact and feature f ′ = 4 of site (B) is set equal to σA,4 = 4.
Bond (A)-(B), which was of type 3 becomes of type 2. Bond
(B)-(C), initially of type 2 becomes of type 3.

the three sites of Figure 1. One of the features of site (B)
is selected and compared with the corresponding one of
site (A). In order for a reaction to occur the two variables
must be the same. This occurs with a probability R

(1)
n =

(1−n/F )(1−δn,0) where we have taken into account that
nothing happens if the bond is of type 0.

Hence with probability R
(1)
n , another variable σB,f ′ is

set equal to σA,f ′ . What is the effect of this change on
the bond (B)-(C)? If σC,f ′ was equal to σB,f ′ , then the
update increases by one the number of features different
in the bond (B)-(C). The probability that σC,f ′ = σB,f ′ is
the probability that we randomly select one of the F −m
equal variables out of the F total variables

R
(2)
m,+1 =

F − m

F
= 1 − m

F
· (2)

With probability 1− R
(2)
m,−1 instead, the variable selected

will be different in site (B) and (C), σC,f ′ �= σB,f ′ . In this
case, since σB,f ′ is set equal to σA,f ′ the final state of bond
(B)-(C) depends on whether σA,f ′ and σC,f ′ are equal or
not. Let us denote as λ the probability that σA,f ′ = σC,f ′ .
Then the probability that bond (B)-(C) goes from type m
to type m − 1 is

R
(2)
m,−1 =

mλ

F
· (3)

The probability R
(2)
m,0 is obtained via the normalization

condition

R
(2)
m,0 =

m(1 − λ)
F

· (4)

In summary the reaction An +Am → An−1+Am+j occurs
with rate

R(1)
n R

(2)
m,j . (5)

The reactions (1) and the rates (5) fully specify the
dynamics of the model. Provided one is able to write down
the appropriate form of λ the mapping from the original
Axelrod model is exact and equations (1) and (5) are an
alternative formulation of the same dynamics.
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Fig. 2. Plot of λ as a function of Q (uniform case) or q (Poisson
case).

3.2 Mean-field approximation

As discussed above, λ is the probability that two indepen-
dent random variables (A and C), different from a third
one (B), are equal. Here we will determine it by intro-
ducing a mean-field approximation, i.e. assuming spatial
uniformity.

Let us call k the value of variable (B) and pB(k) its dis-
tribution. The λ can be written as

∑
k pB(k)λk where λk

is the probability that A and C assume the same value,
different from k. Clearly

λk =
∑

i�=k,j �=k

p̃A(i)p̃C(j)δi,j (6)

where p̃A(i) = pA(i)/
∑

i�=k p(i) is the probability distri-
bution of the variable A constrained to be different from k.
We assume that the distributions of all variables A, B and
C remain equal to the initial ones at all times. For uniform
initial distribution p(i) = 1/Q, we recover the expected
value

λ =
1

Q − 1
· (7)

For variables distributed according to a Poissonian, the
plot of λ as a function of q, is presented in Figure 2. The
two behaviors are qualitatively similar. However, one has
to remark that in the Poissonian case λ = 1 for q = 0,
in the trivial situation when all variables are the same.
For uniform initial condition instead λ = 1 for Q = 2, i.e.
when the variables may assume two values.

From the knowledge of the possible reactions and their
associated transition rates it is straightforward to write
down the mean-field equations for the densities nk of
bonds of type k.

We obtain the set of equations (k = 0, . . . , F )

ṅk = −R
(1)
k nk + R

(1)
k+1nk+1

+
F−1∑
N=1

R
(1)
N nN

[
−nk

(
1 − R

(2)
k,0

)

+ nk−1R
(2)
k−1,1 + nk+1R

(2)
k+1,−1

]
(8)

where clearly n−1 ≡ 0 ≡ nF+1. More explicitly

ṅk = −
(

1 − k

F

)
(1 − δk,0)nk +

(
1 − k + 1

F

)
nk+1

+
F−1∑
N=1

(
1 − N

F

)
nN

[
−nk

(
1 − k

F
(1 − λ)

)

+ nk−1

(
1 − k − 1

F

)
+ nk+1

k + 1
F

λ

]
. (9)

It is easily verified that
∑F

k=0 ṅk = 0. Equations (8) are
mean-field equations, since they neglect spatial fluctua-
tions and noise in the system. They are complemented by
the initial conditions, which are

nk(t = 0) = PF−k
eq (1 − Peq)

k

(
F
k

)
(10)

where Peq is the probability that a feature takes the same
value in two adjacent sites. Clearly Peq = 1/Q in the uni-
form case, while

Peq =
∞∑

h=0

q2he−2q

(h!)2
(11)

for a Poisson initial distribution.
The mean-field system of equations of motion (9) con-

sists of F coupled nonlinear equations. A detailed study
of the temporal evolution is necessarily performed by inte-
grating them numerically. However some important con-
clusions on the asymptotic state of the system can be
drawn analytically by considering the fixed points of equa-
tions (9). A first crucial observation is that, for any F , a
state with all nk = 0 (k = 1, . . . , F − 1) is a fixed point
of the equations. Therefore the system always admits a
family of frozen asymptotic states, parametrized by the
density of fixed bonds nF (n0 = 1 − nF because of nor-
malization). To understand which of these fixed points is
selected by the dynamics we perform a stability analysis,
by linearizing the dynamical system (9) around the generic
fixed point nk = 0.

The stability matrix has F eigenvalues. One eigen-
value is always zero, corresponding to the direction
parametrized by nF and all made of fixed points. F − 2
other eigenvalues are real negative numbers or complex
ones with negative real part, corresponding to stable direc-
tions. The last one, that we denote as µ, is always real and
it crucially depends on the value of λ [12]. Its value as a
function of λ, computed analytically for F = 2 and F = 3,
is plotted in Figure 3 for two different values of nF . Clearly
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Fig. 3. Plot of the eigenvalue µ versus λ for F = 2 (thin lines)
and F = 3 (thick lines), and nF = 0.5 (solid) and nF = 0.8
(dashed).

µ depends from the value of nF , but for any nF > 0 it is
negative for λ < 1/(F −1) and positive for λ > 1/(F −1).
For nF = 0 (homogeneous absorbing state) µ = 0 for any
value of λ, so that the stability of this fixed point can-
not be assessed directly within a linear analysis. However
its stability can be inferred indirectly from the stability of
other fixed points: if all other fixed points are unstable the
fixed point with nF = 0 must be stable; if all others are
stable, the dynamical system will not go to nF = 0. This
allows us to conclude that for values of the parameter Q
or q of the model such that λ < 1/(F − 1) the equations
will converge exponentially fast to a finite value nF > 0
implying that the system remains disordered. If instead
λ > 1/(F − 1) the only possible attractive fixed point is
nF = 0, which will attract the solution more slowly than
exponentially. In this case the system exhibits a power-law
convergence to an ordered state. Whether this transition
actually takes place and for which value of the parameter
of the initial distribution, it depends on the precise value
of λ, that is plotted in Figure 2.

For uniform initial distribution, since λ = 1/(Q− 1) it
is immediate to see that a phase transition occurs for

Qc = F (12)

so that for Q < Qc the system is ordered, while the system
remains asymptotically disordered for Q > Qc.

For Poisson initial distribution and F > 2, the scenario
is the same, with an ordered phase for small q separated
by a sharp transition from an ordered phase for large q.
For F = 2 all finite values of q imply a positive eigen-
value µ and hence a disordered state. Only for q = 0 order
is recovered, but of a very trivial type, since q = 0 means
that all variables are the same already in the initial state.
Notice that, since λ decays as q−1/2 for large q, the tran-
sition point diverges for large F as qc ∼ F 2, differently
from the uniform case.

For easier insight into the behavior of the model we
plot in Figure 4 the mean-field phase diagram.

Fig. 4. Mean-field phase diagram of the model. The two crit-
ical lines are for uniform initial distribution (circles) and for
Poisson initial distribution (diamonds).

3.3 Uniform initial distribution with F = 2

Let us now give a closer look at the case of uniform initial
distribution with F = 2. In this case the set of mean-field
equations (9) is reduced to two coupled equations

ṅ1 = −
[
3
4

+
1

4(Q − 1)

]
n2

1 +
2 − Q

2(Q − 1)
n1nF (13)

ṅF =
1
4
n2

1 −
1

2(Q − 1)
n1nF (14)

where n0 has been eliminated using normalization. In the
case Q = 2 it is easy to solve (14) explicitly, since the
equation for n1 does not depend on nF . One obtains

n1(t) =
1

2 + t
(15)

nF (t) =
1

(2 + t)1/2
− 1

2(2 + t)
· (16)

Hence we find, as expected, that both the density of active
bonds and of fixed bonds vanish asymptotically as power-
laws.

For Q > 2 the two equations (14) become fully cou-
pled. The asymptotic value of nF is found to be

nF (t = ∞) =
Q − 2

Q
(17)

for all values of Q, which will be shown below to agree
very well with numerical results.

4 Numerical results

In order to validate the results of the theoretical approach
we compare them with extensive numerical simulations of
the model. For each value of the parameters, we average
over 10 000 or more realizations. For both types of initial
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Fig. 5. The order parameter 〈Smax〉/L as a function of the
system size L for F = 2. From top to bottom the curves are
for Q = 2, Q = 3, Q = 4 and Q = 5.

distributions, all values of F and of q or Q, we find that the
system reaches for long times an absorbing state with no
active bonds (nA = 0). Extrapolation to the limit L → ∞
indicates that also in the thermodynamic limit the system
freezes asymptotically. This is the first prediction of the
mean-field approach that is verified numerically. We now
turn to a more detailed analysis of the asymptotic state
as parameters are changed.

4.1 Uniform initial distribution

Let us consider first the case with F = 2 variables on each
site, which in two dimensions gives a continuous transi-
tion. The mean-field approach predicts the existence of a
transition between an ordered and a disordered phase for
Qc = 2. Such a prediction is confirmed by the behavior
of the order parameter 〈Smax〉/L. As Figure 5 illustrates,
〈Smax〉/L keeps for Q = 2 a finite value close to 0.71 in
the thermodynamic limit, while it goes to zero for Q > 2.
Hence one macroscopic region occupies a finite fraction
of the system for Q = 2, while for larger values of Q, no
macroscopic domain is formed.

We remark that in the ordered case the asymptotic
value of 〈Smax〉/L is not 1. This should not be taken
as evidence that the system reaches a partially ordered
state with the largest region spanning only a finite part of
the whole lattice. In fact the situation is more complex.
〈Smax〉 is the average over a large number of realizations.
In many of them the system becomes fully ordered and
Smax/L = 1. However in a finite fraction of the realiza-
tions the system remains partially disordered so that the
order parameter has a value smaller than 1. In practice
the distribution of the values of Smax/L for L → ∞ is a
δ-function for Smax/L = 1 plus a finite nontrivial contri-
bution for Smax/L < 1 This leads to 〈Smax〉/L � 0.71.

For Q > 2 the system remains disordered and a fi-
nite fraction nF of the bonds is fixed. In the previous
section, equation (17) is the mean-field result for nF in
the asymptotic state as a function of Q. Such a formula is

Fig. 6. Comparison of the numerical results with the mean-
field formula (Q − 2)/Q for the final density of fixed bonds in
the case F = 2.

Fig. 7. Main: Scaling plot of the density of active bonds nA

versus time for F = 2, Q = 2 and system size (left to right) L =
10, 20, 50, 100, 200, 400, 1000, 2000, 5000. Inset: Scaling plot of
the density of fixed bonds nF versus time for the same set of
parameters.

compared with numerical results in Figure 6. The agree-
ment is excellent, indicating that the mean-field approach
is quantitatively correct in this case.

Let us now analyze the whole dynamical evolution. In
the main part of Figure 7 we plot the temporal behavior
of the density of active bonds nA in the case Q = 2, for
different system sizes. All curves collapse on the same one
when time is rescaled by L2, i.e. nA obeys the scaling form

nA(t, L) = t−1/2gA(t/L2). (18)

The scaling function gA(x) goes to a constant as x 	 1
and goes to zero exponentially for x 
 1. In the inset of
the same figure it is shown that also the density of fixed
bonds obeys a scaling form

nF (t, L) = t−1/3gF (t/L2) (19)

where gF (x) = const for x 	 1 and gF (x) ∼ x1/3 for
x 
 1.
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The physics behind Figure 7 is clear. In the initial state
a finite number of active bonds is present. Notice that for
F = 2 and Q = 2 a single type of active bond exists,
connecting sites with one equal and one different feature.
Interaction between sites implies diffusion of active bonds
and annihilation whenever two active bonds meet. Fixed
bonds are affected by active bonds but the converse is not
true: As far as active bonds are concerned, the system is
equivalent to the reaction-diffusion system A + A → 0.
The decay as t−1/2 of the density of active bonds is easily
related to the combination of diffusive wandering and mu-
tual annihilation [13]. The inverse of nA is a correlation
length that grows in time. In an infinite system such length
grows indefinitely. In a finite lattice, growth stops when
1/nA reaches the system size L, and this yields a cutoff
time scaling as L2. The evolution of fixed bonds is enslaved
by the dynamics active bonds but it is slower. 1/nF ∼ t1/3

is a correlation length non equivalent to 1/nA ∼ t1/2. It
grows with time but remains finite when the cutoff time is
reached, so that the in the frozen state nF reaches a finite
value decreasing as L−2/3, which vanishes in the thermo-
dynamic limit.

A comparison of the exponents found numerically with
the mean-field values (Eq. (16)) indicates that the mean-
field approximation correctly reproduces that nF decays
more slowly than nA, but it does not predict the cor-
rect exponents. This is not a surprising result: we have
computed the mean-field rates assuming the system to
be homogeneous, while instead ordered regions grow in-
definitely. The problem is here the same of the mean-field
treatment for the reaction-diffusion system A+A → 0 [13].
For higher values of Q the disagreement between the
mean-field and numerical results is similar. It is somewhat
striking that despite the dynamics is not captured quanti-
tatively by the mean-field approximation, the asymptotic
value for nF is remarkably accurate (Fig. 6).

Let us now discuss the case F > 2 corresponding to a
discontinuous transition in d = 2. For illustrating the be-
havior common to all values F > 2 let us focus on the case
F = 10. As in the two-dimensional case [6], the system ex-
hibits a discontinuous transition between a fully ordered
phase for small Q and a disordered phase for Q > Qc.
This can be inferred from Figure 8, where 1 − 〈Smax〉/L
is plotted versus Q. By observing that the convergence of
〈Smax〉/L to 1 is exponential for Q ≤ 6, while curves are
bent upward for Q > 7 one is led to conclude that the
transition occurs for Qc � 7.

4.2 Poissonian initial distribution

Let us consider now a system such that the initial values
of the variables are chosen according to a discrete Poisson
distribution of parameter q. q plays here a role similar to
the parameter Q for the uniform initial distribution, since
it fixes the average value of the variables in the initial
state. However, no matter how small is q, arbitrarily large
values can be extracted with a Poisson distribution.

Let us consider first the case F = 2 (Fig. 9).

Fig. 8. Plot of 1 − 〈Smax〉/L as a function of the system size
L for F = 10. From bottom to top the curves are for Q = 3,
Q = 5, Q = 6, Q = 7, Q = 8, Q = 9, Q = 10 and Q = 15.

Fig. 9. Plot of 1 − 〈Smax〉/L as a function of the system size
L for F = 2 for Poisson initial distribution. From bottom to
top the curves are for q = 0.02, q = 0.05, q = 0.1, q = 0.25,
q = 0.5, q = 1, q = 2 and q = 10.

The behavior differs qualitatively from the uniform
case. For any value q > 0 it is clear that the order pa-
rameter goes asymptotically to zero, even if for small q,
〈Smax〉/L remains close to 1 for relatively large L. We
conclude that there is strong evidence that for F = 2 an
initial distribution of Poisson type destroys long range or-
der for any value of q > 0, as predicted by the mean-field
approach.

We finally turn to the case F = 10, as an example
of what happens in general for F > 2. The value of 1 −
〈Smax〉/L is plotted in Figure 10. For small q it is clear
that the system becomes ordered as L grows while for large
q, the curves tend to go toward 1, indicating the existence
of a discontinuous phase transition for intermediate q. A
rough estimate of the transition point is between q = 4
and q = 5.

These numerical data corroborate the picture emerging
from the mean-field approach. For F = 2 we actually find
no evidence of long range order in the system, no matter
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Fig. 10. Plot of 1 − 〈Smax〉/L as a function of the system
size L for F = 10 for Poisson initial distribution. From bottom
to top the curves are for q = 1, q = 2, q = 3, q = 4, q = 5,
q = 6, q = 8, and q = 10.

how small q is taken. For F = 10 we observe instead the
pattern already found with uniform initial distribution: a
transition between a disordered phase for large q and an
ordered one for smaller values of the parameter q. Also
the location of the transition seems to be captured with
good accuracy.

5 Conclusions

In this paper we have analyzed in detail the behavior in
one dimension of the Axelrod model, a cellular automaton
introduced in reference [4] for the description of social
influence. Interestingly, the one-dimensional version of
the model displays a phenomenology as rich as the two-
dimensional case. More precisely, we find by numerical
simulations a non-equilibrium phase transition between a
disordered and an ordered phase. This phenomenology is
recovered accurately by a simple mean-field treatment of
the problem, which exploits a mapping onto a reaction-
diffusion problem involving F different species. The
mean-field approach is successful in several aspects. First,
it correctly predicts that the system always reaches an
asymptotically absorbing state. Secondly, it captures the
existence of a transition in the final absorbing state or the
absence of it (for Poissonian initial conditions and F = 2).
Finally, it provides reasonably accurate estimates of the

critical value of the control parameter Q or q. Mean-field
fails instead in the prediction of the exponents of the tem-
poral behaviors close to the transition. This is a typical
scenario for mean-field treatments: transition points can
be computed with good accuracy while exponents are not
captured correctly. The theoretical approach presented in
this paper is the simplest suitable for this kind of problem.
For more precise values of the exponents one should go be-
yond mean-field, by including diffusion terms and noise in
equation (9) and applying dynamic renormalization group
techniques [14,15].
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